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Introduction Problem Setting and Background

What We Wish We Observed
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X̃i = µ+ ξi , i ∈ [N], ξ ∼ SG(σ2), Eξ = 0

µ ∈ K ⊆ Rn,K is known and star-shaped.

Eξ = 0, ξ ∼ SG(σ2) :

sup
v∈Sn−1

Eeλv
Tξ ≤ eλ

2σ2/2

K

k∗

∀x ∈ K , ∀α ∈ [0, 1] ⇒
αk∗ + (1− α)x ∈ K



Introduction Problem Setting and Background

All Powerful Adversary
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▶ Corrupts ≤ to ϵ < 1/2 fraction of the N observations



Introduction Problem Setting and Background

What We Actually Observe
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We observe Xi = C(X̃i ), i ∈ [N],

C(X̃i ) = X̃i for ≥ (1− ϵ)N observations,

but can be arbitrary on the rest!

▶ Compare and contrast to Huber contamination model
Xi

i.i.d.∼ (1− ϵ)Pµ + ϵQ

▶ In the adversarial model Xi even the “good” samples are
non i.i.d!

▶ We have guaranteed bounded number of outliers

▶ In Huber model risk is infinite on unbounded sets
[Bateni and Dalalyan, 2020]
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Relevant Literature
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[Chen et al., 2018]

[Lugosi and Mendelson, 2021], [Neykov, 2022],

[Diakonikolas et al., 2022]

[Diakonikolas et al., 2019, Diakonikolas et al., 2017]

▶ There are (too) many relevant papers to fit on one slide

▶ Unconstrained setting

▶ Error bounds with high probability rather than expectation,

▶ Sample sizes required sufficiently large;

▶ Non-matching lower and upper bounds,

▶ A non-adversarial Huber contamination model,

▶ Distinct distributional assumptions on the noise term.
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Examples of Star-Shaped Sets
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K

k∗

∀x ∈ K , ∀α ∈ [0, 1] ⇒
αk∗ + (1− α)x ∈ K

Non star-shaped set!

▶ K — all ≤ s-sparse vectors in Rn for some s ≤ n.

▶ Any convex set!
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Outline of the Talk
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1 Entropic Characterization of the Minimax Rate

2 Upper Bound Details

3 Examples



Entropic Characterization of the Minimax Rate Preliminary

Minimax Rate

▶ Known (or symmetric) Noise:

inf
µ̂

sup
µ∈K

sup
C

E∥µ̂(X )− µ∥2

▶ Unknown Noise:

inf
µ̂

sup
µ∈K

sup
ξ∼SG(σ2)

sup
C

E∥µ̂(X )− µ∥2
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Entropic Characterization of the Minimax Rate Preliminary

Global Entropy
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> η

T
θ1

θ2 θ3θM

Definition (Global Entropy)

For a set T ⊂ Rn, a set θ1, θ2, . . . , θM ∈ T is called a packing set if
∥θi − θj∥ > η for all i ̸= j . The η packing number is the cardinality of the
maximal packing set. The log of that packing number is called (global)
entropy.



Entropic Characterization of the Minimax Rate Preliminary

Local Entropy
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> η/c

K

θ

η

Definition (Local Entropy)

Let θ ∈ K be a point. Consider the set B(θ, η) ∩ K . Let
M(η/c ,B(θ, η) ∩ K ) denote the largest cardinality of an η/c packing set
in B(θ, η) ∩ K . Let

logM loc
K (η, c) := sup

θ∈K
logM(η/c ,B(θ, η) ∩ K ).



Entropic Characterization of the Minimax Rate Preliminary

A Fact for Local Entropy

12 / 26

For star-shaped sets the map η 7→ logM loc
K (η, c) is non-increasing!



Entropic Characterization of the Minimax Rate Known or Symmetric Noise Minimax Rate

Known or Symmetric Noise Minimax Rate

Theorem (A. Prasadan and N. (2024))

We have (for sufficiently large c) and any ϵ < c0 < 1/2

inf
µ̂

sup
µ∈K

sup
C

E∥µ̂(X )− µ∥2 ≍ max(η∗2, σ2ϵ2) ∧ d2

where d = diam(K ) (d =∞ if K is unbounded), and η∗ solves the
entropic equation

η∗ = sup

{
η :

Nη2

σ2
≤ logM loc(η, c)

}
,

▶ η∗ ∧ d ≳ σ/
√
N ∧ d so that when ϵ < 1/

√
N outliers do not affect

the rate!
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Entropic Characterization of the Minimax Rate Unknown Noise Minimax Rate

Unknown Noise Minimax Rate

Theorem (A. Prasadan and N. (2024))

We have (for sufficiently large c) and any ϵ < 1/16

inf
µ̂

sup
µ∈K

sup
ξ∼SG(σ2)

sup
C

E∥µ̂(X )− µ∥2 ≍ max(η∗2, σ2ϵ2 log(1/ϵ)) ∧ d2

where d = diam(K ) (d =∞ if K is unbounded), and η∗ solves the
entropic equation

η∗ = sup

{
η :

Nη2

σ2
≤ logM loc(η, c)

}
,
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Entropic Characterization of the Minimax Rate Unknown Noise Minimax Rate

Outline of the Talk
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1 Entropic Characterization of the Minimax Rate

2 Upper Bound Details

3 Examples



Upper Bound Details Directed Tree Construction

Algorithm (Directed Tree Construction)

Υ1
K

B (Υ1, d)

d/c

d
Υ2

K

B (Υ2, d/2)

d/4c

d/2

Υ3

K

B (Υ3, d/4)

d/8c

d/4

Step 1

Step 2
(pruning)

Step 3
(pruning)

16 / 26



Upper Bound Details Comparison Between Two Points

Algorithm (Comparison Between Two Points)

Definition

Given an ordered pair (ν1, ν2) of points ν1, ν2 ∈ Rn, define the test ψν1,ν2

by

ψν1,ν2({Xi}i∈[N]) = 1(|{i ∈ [N] : ∥Xi − ν1∥ ≥ ∥Xi − ν2∥}| ≥ N/2).

We drop the subscripts and write ψ when the context is clear.

Definition

Assume points ν1 and ν2 are in lexicographic order.
If ψν1,ν2({Xi}i∈[N]) = 0, then ν1 ≻ ν2 (or ν2 ≺ ν1).
If ψν1,ν2({Xi}i∈[N]) = 1 then ν2 ≻ ν1 (or ν1 ≺ ν2).
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Upper Bound Details Tournament

Algorithm (Tournament)

At any point ν, given a radius δ > 0 and finite set S ⊂ K , define

T (δ, ν,S) =

{
maxν′∈S ∥ν − ν ′∥ if ν ≺ ν ′ and ∥ν − ν ′∥ ≥ (c/2− 1)δ

0 otherwise.

Algorithm 1: Robust Upper Bound Algorithm

Input: A point Υ1 ∈ K
1 k ← 1;
2 Υ← [Υ1];
3 while TRUE do
4 Υk+1 ← argminν∈O(Υk ) T

(
d

2k−1c
, ν,O(Υk)

)
5 Υ.append(Υk+1);
6 k ← k + 1;

7 return Υ = [Υ1,Υ2, . . . ]
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Upper Bound Details Some Omitted Details

Algorithm (Some Omitted Details)

19 / 26

▶ We actually add a Ri ∼ N (0, σ2I) variable to each observation

▶ When noise is unknown we change the def of ≺ and ≻:

ψν1,ν2({Xi}2Ni=1)

=

{
1(TM({Vi}2Ni=1) > 0) if δ2

σ2 ≤ C

1(|{i ∈ [2N] : ∥Xi + Ri − ν1∥ ≥ ∥Xi + Ri − ν2∥}| ≥ N) if δ2

σ2 > C

where Vi = ∥Xi + Ri − ν1∥2 − ∥Xi + Ri − ν2∥2

▶ In the unbounded K case we first trap µ in a bounded set with high
probability

▶ Then kind of reuse previous results for bounded sets



Upper Bound Details Some Omitted Details

Outline of the Talk
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1 Entropic Characterization of the Minimax Rate

2 Upper Bound Details

3 Examples



Examples

Example 1

▶ K = Rn

▶ logM loc(η, c) ≍ n

▶ Hence η∗2 ≍ nσ2/N and the rate is

▶ max(nσ2/N, σ2ϵ2) or max(nσ2/N, σ2ϵ2 log(1/ϵ))
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Examples

Example 2

▶ K = s-sparse vectors

▶ Lemma: logM loc(η, c) ≍ s log(1 + n/s)

▶ Hence η∗2 ≍ s log(1 + n/s)σ2/N and the rate is

▶ max(s log(1 + n/s)σ2/N, σ2ϵ2) or
max(s log(1 + n/s)σ2/N, σ2ϵ2 log(1/ϵ))
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Examples

Food for thought

▶ Clearly, there are many more examples like ℓp bodies for p ∈ [1,∞]
and even p < 1

▶ Even the case with N = 1, ϵ = 0 is interesting!

▶ E.g. K is a d-dimensional subspace – linear regression

▶ Or K = {(f (x1), f (x2), . . . , f (xn))|f ∈ F} with xi being fixed design
points – nonparametric regression with fixed design
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Thanks!

Thank You!
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